Dental Stem Cells
Dental stem cells / parent dental cells (collectively referred to as dental cells [DSCs]) are classified and comprised of dental pulp stem cells, Dental stem cells are a type of mesenchymal stem cell found in the dental tissues, including the dental pulp, periodontal ligament, and exfoliated deciduous teeth. These stem cells have the unique ability to differentiate into various cell types, such as odontoblasts (which form dentin), osteoblasts (bone-forming cells), chondrocytes (cartilage cells), and even neural cells. Due to their regenerative properties, dental stem cells hold great potential for use in tissue engineering and regenerative medicine. They are being explored for applications in repairing damaged teeth, treating periodontal diseases, and even in broader medical fields like bone regeneration and nerve repair. Their ease of collection and ability to proliferate make them a promising resource for future therapeutic applications. stem cells from clear teeth, stem cells from apical papilla, periodontal ligament stem cell, and the ancestor of the dental follicle. cells. Common features of these cell numbers are the ability to regenerate themselves and the ability to divide multiple lines (multipotency). In vitro and animal studies have shown that DSCs can divide into osseous, odontogenic, adipose, endothelial, and neural-like tissues. In a recent study, three molar dental pulp somatic cells were rearranged to become pluripotent stem cells, and dental pulp pluripotent like stem cells were separated from third dental pulp.
Related Conference of Dental Stem Cells
21th World Congress on Tissue Engineering Regenerative Medicine and Stem Cell Research
16th International Conference on Human Genetics and Genetic Diseases
19th International Conference on Genomics & Pharmacogenomics
Dental Stem Cells Conference Speakers
Recommended Sessions
- Bio Banking Stem cell
- Bone Marrow Transplantation
- CAR-T Cell Therapy: Current Status and Future Directions
- Cell and Genetic Therapy
- Cellular Reprogramming and Induced Pluripotent Stem Cells
- Clinical Methods
- Dental Stem Cells
- ell-Based Therapies for Neurological Disorders
- Neurodegenerative Disease
- Research and Development of Stem Cell & Regenerative Drugs
- Stem Cell Animal Applications
- Stem Cell Apoptosis and Signal Transmission
- Stem Cell Embryology
- Stem Cell in Drug Discovery
- Theories of Aging in Stem Biology
- Tissue Engineering
- Tissue Engineering and 3d Cell Culture
- Translational Research in Stem Cell Assessments
Related Journals
Are you interested in
- Artificial Intelligence and Computational Biology in Regenerative Medicine - Stemgen 2026 (France)
- Biomaterials and Nanotechnology in Regenerative Medicine - Stemgen 2026 (France)
- Cancer Stem Cells and Oncology - Stemgen 2026 (France)
- Cardiovascular Regeneration - Stemgen 2026 (France)
- Clinical Trials and Translational Stem Cell Research - Stemgen 2026 (France)
- Ethical, Legal, and Social Implications in Stem Cell Research - Stemgen 2026 (France)
- Future Trends: Organoids, Bioengineering, and Next-Generation Therapies - Stemgen 2026 (France)
- Gene Editing and CRISPR Technologies - Stemgen 2026 (France)
- Induced Pluripotent Stem Cells (iPSCs) and Reprogramming - Stemgen 2026 (France)
- Mesenchymal Stem Cells (MSCs) in Therapy - Stemgen 2026 (France)
- Regenerative Dentistry and Craniofacial Applications - Stemgen 2026 (France)
- Regenerative Medicine and Tissue Engineering - Stemgen 2026 (France)
- Stem Cell Banking and Cryopreservation - Stemgen 2026 (France)
- Stem Cell Biology and Cellular Mechanisms - Stemgen 2026 (France)
- Stem Cells in Neurological and Neurodegenerative Disorders - Stemgen 2026 (France)
